Table 2. Merits and Deficits of Modes of NOS Instruction. | Mode | Merits | Deficits | |-----------------|--|--| | Inquiry | helps motivate engagement through personal involvement fosters personal integration of lessons supports understanding of constucted interpretations, models, forms of evidence, and model revision develops experimental competences: framing hypotheses, designing investigations, handling data, evaluating results relates NOSK to inquiry skills and methods | may not inspire curiosity or interest in initial problem may be viewed as artificial exercise or school "game," not as genuine science when investigations "fail," can prompt negative emotions, alienating student from NOS lessons typically shuttered off from cultural, social, or political contexts hard to model role of "chance," or contingency requires substantive amounts of time and resources | | Historical Case | helps motivate engagement through cultural and human contexts and through narrative format can support understanding of long-scale and large-context NOS features: esp. conceptual change, and cultural/biographical/economic contexts of research problems and interpretive biases can support understanding of investigative NOS: problemposing, problem-solving, persuasion, debate can support understanding of complexity of scientific practice, as well as historical contingency supports analysis of process and product, since ultimate outcomes are known when framed in inquiry mode, can develop scientific thinking skills — more efficiently than with hands-on inquiry can foster understanding of error and revision — without risking emotions of personal failure | may seem "old" and irrelevant if text-based only, limits development of hands-on experimental competences if rationally reconstructed only or presented as final-form content, does not support understanding of "science-in-the-making" | | Mode | Merits | Deficits | |-------------------|--|---| | Contemporary Case | helps motivate engagement through authenticity and | • cannot be fully resolved, leaving uncertainty and | - "here-now" relevance • can support understanding of cultural, political and economic contexts of science - can support understanding of how science and values relate - develops scientific literacy skills in analyzing SSI - incomplete NOS lessons - cannot exhibit details of process which are not yet public or are culturally obscured